Печатная плата

Материал из Machinepedia
Перейти к: навигация, поиск
Печатная плата со смонтированными на ней электронными компонентами.
Гибкая печатная плата с установленными деталями объёмного и поверхностного монтажа.
Чертеж платы в CAD-программе и готовая плата
Две макетных платы для микроконтроллера ATmega8. На левой плате: сверху место для силовых транзисторов, под ним разъём программатора. В центре место для микросхемы, слева от неё — место для кварца. По кромке платы проведены дорожки питания и «земли».
Разрез многослойной печатной платы с микросхемой в корпусе BGA. Сверху видно кремниевый кристалл. Коричневые полоски — медь дорожек и переходного отверстия. Зеленые участки — паяльная маска.

Печа́тная пла́та — пластина из диэлектрика, на поверхности и/или в объеме которой сформированы электропроводящие цепи электронной схемы. Печатная плата предназначена для электрического и механического соединения различных электронных компонентов. Электронные компоненты на печатной плате соединяются своими выводами с элементами проводящего рисунка обычно пайкой, или, значительно реже, сваркой, накруткой, склёпкой, впрессовыванием, в результате чего собирается электронный модуль (или смонтированная печатная плата).

Содержание

Устройство

В отличие от навесного монтажа, на печатной плате электропроводящий рисунок выполнен из фольги, целиком расположенной на твердой изолирующей основе. Печатная плата содержит монтажные отверстия и контактные площадки для монтажа выводных или планарных компонентов. Кроме того в печатных платах имеются переходные отверстия для электрического соединения разных слоёв фольги. Завершающим штрихом являются защитное покрытие («паяльная маска») и маркировка.

Виды печатных плат

В зависимости от количества слоёв с электропроводящим рисунком, печатные платы подразделяют на односторонние (ОПП, имеется только один слой фольги), двухсторонние (ДПП, два слоя фольги) и многослойные (МПП, фольга не только на двух сторонах платы но и во внутренни слоях диэлектрика). Многослойные печатные платы (сокращённо МПП, применяются в случаях, когда разводка соединений на двусторонней плате становится слишком сложной. По мере роста сложности проектируемых устройств и плотности монтажа увеличивается количество слоёв на платах. Для соединения проводников между слоями используются переходные металлизированные отверстия.

По свойствам материала основы:

Печатные платы могут иметь свои особенности, в связи с требованиями к особым условиям эксплуатации (например, расширенный диапазон температур) или особенности применения (например, в приборах, работающих на высоких частотах).

Материалы

Основой печатной платы служит диэлектрик, наиболее часто используются такие материалы, как стеклотекстолит, гетинакс.

Так же основой печатных плат может служить металлическое основание, покрытое диэлектриком (например, анодированный алюминий), поверх диэлектрика наносится медная фольга дорожек. Такие печатные платы применяются в силовой электронике для эффективного теплоотвода от электронных компонентов. При этом металлическое основание платы крепится к радиатору.

В качестве материала для печатных плат, работающих в диапазоне СВЧ и при температурах до 260 °C, применяется фторопласт, армированный стеклотканью (например, ФАФ-4Д) и керамика.

Гибкие платы делают из полиимидных материалов, таких как каптон.

Конструирование

Конструирование плат происходит в специализированных программах автоматизированного проектирования. Наиболее известны P-CAD, OrCAD, TopoR, Altium Designer и др. Сам процесс конструирования часто именуют сленговым словом разводка, подразумевая процесс прокладки проводников.

Нормативы

В России существуют нормативы на конструкторскую документацию печатных плат в рамках Единой системы конструкторской документации:

  • ГОСТ 2.123-93 Единая система конструкторской документации. Комплектность конструкторской документации на печатные платы при автоматизированном проектировании.
  • ГОСТ 2.417-91 Единая система конструкторской документации. Платы печатные. Правила выполнения чертежей.

Другие стандарты на печатные платы:

  • ГОСТ Р 53386-2009 Платы печатные. Термины и определения.
  • ГОСТ Р 53429-2009 Платы печатные. Основные параметры конструкции. Этот ГОСТ задает классы точности печатных плат и соответствующие геометрические параметры.

Типовой процесс

Рассмотрим типичный процесс разработки платы из готовой принципиальной электрической схемы:

  • Трансляция принципиальной электрической схемы в базу данных САПР разводки печатной платы. Заранее определяются чертежи каждого компонента, расположение и назначение выводов и др. Обычно используются готовые библиотеки компонентов, поставляемые разработчиками САПР.
  • Уточнение у будущего изготовителя печатной платы его технологических возможностей (имеющиеся материалы, количество слоев, класс точности, допустимые диаметры отверстий, возможность покрытий и т.п.).
  • Определение конструктива печатной платы (габаритов, точек крепления, допустимых высот компонентов).
    • Вычерчивание габаритов (краёв) платы, вырезов и отверстий, областей запрета размещения компонентов.
    • Расположение конструктивно-привязанных деталей: разъёмов, индикаторов, кнопок и др.
    • Выбор материала платы, количества слоев металлизации, толщины материала и толщины фольги (наиболее часто используется плата толщиной 1,55 мм и фольга 35 мкм).
  • Выполнение автоматического или ручного размещения компонентов. Обычно стремятся разместить компоненты на одной стороне платы поскольку двусторонний монтаж деталей заметно дороже в производстве.
  • Запуск трассировщика. При неудовлетворительном результате — перерасположение компонентов. Эти два шага зачастую выполняются десятки или сотни раз подряд. В некоторых случаях трассировка печатных плат (отрисовка дорожек) производится вручную полностью или частично.
  • Проверка платы на ошибки (DRC, Design Rules Check): проверка на зазоры, замыкания, наложения компонентов и др.
  • Экспорт файла в формат, принимаемый изготовителем печатных плат, например Gerber.
  • Подготовка сопроводительной записки в которой, как правило, указывают тип фольгированного материала, диаметры сверления всех типов отверстий, вид переходных отверстий (закрытые лаком или открытые, луженые), области гальванических покрытий и их тип, цвет паяльной маски, необходимость маркировки, способ разделения плат (фрезеровка или скрайбирование) и т.п..

Изготовление

Изготовление ПП возможно аддитивным или субтрактивным методом. В аддитивном методе проводящий рисунок формируется на нефольгированном материале путём химического меднения через предварительно нанесённую на материал защитную маску. В субтрактивном методе проводящий рисунок формируется на фольгированном материале, путём удаления ненужных участков фольги. В современной промышленности применяется исключительно субтрактивный метод.

Весь процесс изготовления печатных плат можно разделить на четыре этапа:

  • Изготовление заготовки (фольгированного материала).
  • Обработка заготовки с целью получения нужных электрического и механического вида.
  • Монтаж компонентов.
  • Тестирование.

Часто под изготовлением печатных плат понимают только обработку заготовки (фольгированного материала). Типовой процесс обработки фольгированного материала состоит из нескольких этапов: сверловка переходных отверстий, получение рисунка проводников путем удаления излишков медной фольги, металлизация отверстий, нанесение защитных покрытий и лужение, нанесение маркировки. Для многослойных печатных плат добавляется прессование конечной платы из нескольких заготовок.

Изготовление фольгированного материала

Фольгированный материал — плоский лист диэлектрика с наклеенной на него медной фольгой. Как правило в качестве диэлектрика используют стеклотекстолит. В старой или очень дешевой аппаратуре используют текстолит на тканевой или бумажной основе, иногда именуемый гетинаксом. В СВЧ устройствах используют фторсодержащие полимеры (фторопласты). Толщина диэлектрика определяется требуемой механической и электрической прочностью, наибольшее распространение получила толщина 1,5 мм.

На диэлектрик с одной или двух сторон наклеивают сплошной лист медной фольги. Толщина фольги определяется токами под которые проектируется плата. Наибольшее распространение получила фольга толщиной 35 мкм.

Алюминиевые печатные платы

Отдельную группу материалов составляют алюминиевые металлические печатные платы. Их можно разделить на две группы.

Первая группа - решения в виде листа алюминия с качественно оксидированной поверхностью на которую наклеена медная фольга. Такие платы нельзя сверлить, поэтому обычно их делают только односторонними. Обработка таких фольгированных материалов выполняется по традиционным технологиям химического нанесения рисунка.

Вторая группа подразумевает создание токопроводящего рисунка непосредственно в алюминии основы. Для этой цели алюминиевый лист оксидируют не только по поверхности но и на всю глубину основы согласно рисунку токопроводящих областей, заданному фотошаблоном.

Обработка заготовки

Получение рисунка проводников

При изготовлении плат используются химические, электролитические или механические методы воспроизведения требуемого токопроводящего рисунка, а также их комбинации.

Химический способ

Химический способ изготовления печатных плат из готового фольгированного материала состоит из двух основных этапов: нанесение защитного слоя на фольгу и травление незащищенных участков химическими методами.

В промышленности защитный слой наносится фотохимическим способом с использованием ультрафиолетово-чувствительного фоторезиста, фотошаблона и источника ультрафиолетового света. Фоторезистом сплошь покрывают медь фольги, после чего рисунок дорожек с фотошаблона переносят на фоторезист засветкой. Засвеченный фоторезист смывается, обнажая медную фольгу для травления, незасвеченный фоторезист фиксируется на фольге, защищая ее от травления.

Фоторезист бывает жидким или пленочным. Жидкий фоторезист наносят в промышленных условиях так как он чувствителен к несоблюдению технологии нанесения. Пленочный фоторезист популярен при ручном изготовлении плат, однако он дороже. Фотошаблон представляет собой УФ-прозрачный материал с распечатанным на нём рисунком дорожек. После экспозиции фоторезист проявляется и закрепляется как и в обычном фотохимическом процессе.

В любительских условиях защитный слой в виде лака или краски может быть нанесен шелкотрафаретным способом или вручную. Радиолюбители для формирования на фольге травильной маски применяют перенос тонера с изображения, отпечатанного на лазерном принтере («лазерно-утюжная технология»).

Под травлением фольги понимают химический процесс перевода меди в растворимые соединения. Незащищенная фольга травится, чаще всего, в растворе хлорного железа или в растворе других химикатов, например медного купороса, персульфата аммония, аммиачного медно-хлоридного, аммиачного медно-сульфатного, на основе хлоритов, на основе хромового ангидрида. При использовании хлорного железа процесс травления платы идет следующим образом: FeCl3+Cu → FeCl2+CuCl. Типовая концентрация раствора 400 г/л, температура до 35°С. При использовании персульфата аммония процесс травления платы идет следующим образом: (NH4)2S2O8+Cu → (NH4)2SO4+CuSO4.

После травления защитный рисунок с фольги смывается.

Механический способ

Механический способ изготовления предполагает использование фрезерно-гравировальных станков или других инструментов для механического удаления слоя фольги с заданных участков.

Лазерная гравировка

До недавнего времени лазерная гравировка печатных плат была слабо распространена в связи с хорошими отражающими свойствами меди на длине волны наиболее распространенных мощных газовых СО лазеров. В связи с прогрессом в области лазеростроения сейчас начали появляться промышленные установки прототипирования на базе лазеров.

Металлизация отверстий

Переходные и монтажные отверстия могут сверлиться, пробиваться механически (в мягких материалах типа гетинакса) или лазером (очень тонкие переходные отверстия). Металлизация отверстий обычно выполняется химическим или механическим способом.

Механическая металлизация отверстий выполняется специальными заклепками, пропаянными проволочками или заливкой отверстия токопроводящим клеем. Механический способ дорог в производстве и потому применяется крайне редко, обычно в высоконадежных штучных решениях, специальной сильноточной технике или радиолюбительских условиях.

При химической металлизации в фольгированной заготовке сначала сверлятся отверстия, затем они металлизируются и только потом производится травление фольги для получения рисунка печати. Химическая металлизация отверстий — многостадийный сложный процесс, чувствительный к качеству реактивов и соблюдению технологии. Поэтому в радиолюбительских условиях практически не применяется. Упрощенно состоит из таких этапов:

  • Нанесение на диэлектрик стенок отверстия проводящей подложки. Эта подложка очень тонкая, непрочная. Наносится химическим осаждением металла из нестабильных соединений, таких как хлорид палладия.
  • На полученную основу производится электролитическое или химическое осаждение меди.
  • В конце производственного цикла для защиты довольно рыхлой осажденной меди применяется либо горячее лужение либо отверстие защищается лаком (паяльной маской). Нелуженые переходные отверстия низкого качества являются одной из самых частых причин отказа электронной техники.

Прессование многослойных плат

Многослойные платы (с числом слоев более 2) собираются из стопки тонких двух- или однослойных печатных плат, изготовленных традиционным способом (кроме наружных слоев пакета - их пока оставляют с нетронутой фольгой). Их собирают «бутербродом» со специальными прокладками (препреги). Далее выполняется прессование в печи, сверление и металлизация переходных отверстий. В последнюю очередь делают травление фольги внешних слоев.

Переходные отверстия в таких платах могут также делаться до прессования. Если отверстия делаются до прессования то можно получать платы с так называемыми глухими отверстиями (когда отверстие есть только в одном слое бутерброда), что позволяет уплотнить компоновку. Однако такие платы гораздо дороже в производстве и встречаются довольно редко.

Нанесение покрытий

Возможны такие покрытия как:

  • Защитно-декоративные лаковые покрытия («паяльная маска»). Обычно имеет характерный зеленый цвет.
  • Лужение. Защищает поверхность меди, увеличивает толщину проводника, облегчает монтаж компонентов. Обычно выполняется погружением в ванну с припоем или волной припоя.
  • Гальваническое покрытие фольги инертными металлами (золочение, палладирование) и токопроводящими лаками для улучшения контактных свойств разъемов и мембранных клавиатур.
  • Декоративно-информационные покрытия (маркировка). Обычно наносится с помощью шелкографии, реже — струйным методом или лазером.

Механическая обработка

На одном листе заготовки зачастую помещается множество отдельных плат. Весь процесс обработки фольгированной заготовки они проходят как одна плата и только в конце их готовят к разделению. Если платы прямоугольные то фрезеруют несквозные канавки, облегчающие последующее разламывание плат. Если платы сложной формы то делают сквозную фрезеровку, оставляя узкие мостики чтобы платы не рассыпались. Для плат без металлизации вместо фрезеровки могут сверлить ряд отверстий с маленьким шагом. Сверление крепежных (неметаллизированных) отверстий также происходит на этом этапе.

См. также: ГОСТ 23665-79 Платы печатные. Обработка контура. Требования к типовым технологическим процессам.

По типовому техпроцессу отделение плат от заготовки происходит уже после монтажа компонентов.

Монтаж компонентов

Пайка является основным методом монтажа компонентов на печатные платы. Пайка может выполняться как вручную паяльником так и с помощью специально разработанных специфических технологий.

Пайка волной

Основной метод автоматизированной групповой пайки для выводных компонентов. С помощью насосов создается длинная волна расплавленного припоя. Плату проводят над волной так чтобы волна едва коснулась нижней поверхности платы. При этом выводы заранее установленных выводных компонентов смачиваются волной и припаиваются к плате.

Пайка в печах

Основной метод групповой пайки планарных компонентов. На контактные площадки печатной платы через трафарет (методом шелкографии) наносится специальная паяльная паста (порошок припоя в пастообразном флюсе). Затем устанавливаются планарные компоненты. Затем плату с установленными компонентами подают в специальную печь, где флюс паяльной пасты активизируется а порошок припоя плавится, припаивая компонент.

Если такой монтаж компонентов выполняется с двух сторон то плата подвергается этой процедуре дважды - отдельно для каждой стороны монтажа. Планарные компоненты устанавливаются на капельки клея, которые не позволяют им упасть с перевернутой платы во время второй пайки.

После пайки плату обрабатывают растворителями с целью удаления остатков флюса и других загрязнений.

Установка компонентов

Установка компонентов может выполняться как вручную так и на специальных автоматах-установщиках. Автоматическая установка уменьшает вероятность ошибки и значительно ускоряет процесс (лучшие автоматы устанавливают несколько компонентов в секунду).

Финишные покрытия

После пайки печатную плату с компонентами покрывают защитными составами: гидрофобизаторами, лаками, средствами защиты открытых контактов.

Личные инструменты
Пространства имён

Варианты
Действия
Присоединиться сейчас к бесплатной торговой площадке №1 для промышленников в России machinebook
Навигация
Навигация
Рекламодателям
Инструменты
Яндекс.Метрика